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Abstract-An anatysis is performed to study the flow- and heat-transfer characteristics of laminar mixed 
forced and free convection about a sphere. The tr~sformed conservation equations of the nonsimilar 
boundary layers are solved by a finite difference method. Numerical results for gases having a Prandti 
number of 0.7 are presented for buoyancy parameters which cover the entire regime of mixed convection, 
ranging from pure forced convection to pure free convection. In general, it is found that both the local- 
friction factor and the local Nusselt number increase with increasing buoyancy force for aiding flow and 
decrease with increasing buoyancy force for opposing flow. The effects of the variation of the local free 
stream velocities on the wall shear and surface heat-transfer results are also examined. With respect to 
the heat-transfer results, the buoyancy force effects on forced convection become signific~t for 
Gr/Re’ > 1.67 and < - 1.33, respectively for aiding and opposing flows. The inertia force effects on free 
convection are found to be significant for Re*/Gr > 0.01. The buoyancy-affected velocity profiles exhibit 

an overshoot beyond the local free stream velocity for aiding flow and an S-shape for opposing flow. 

NOMENCLATURE 

local friction factor [ 13 ; 
reduced stream function [1], equation (26); 
reduced stream function [I], equation (9); 
gravitational acceleration [m/s’]; 
local heat-transfer coefficient [W/m’ K]; 
Grashof number, gfi(Tw-- Ta)R3/v2 [l]; 
thermal ~ndu~tivity fw/mK] ; 
local Nusselt number, ~R/k [ I]; 
Prandtl number [ I]; 
local surface heat-transfer rate per unit area 

[W/m’]; 
radius of sphere [ml; 
radial distance from symmetric axis to 
surface [m] ; 
Reynolds number, u, R/v [l] ; 
fluid temperature [K]; 
wall temperature [K] ; 
free stream temperature [K]; 
local free stream velocity [m/s]; 
velocity component in x direction [m/s]; 
undisturbed oncoming free stream velocity 

[@I ; 
velocity component in y direction [m/s]; 
dimensional coordinates shown in Fig. 3 [m]; 
dimensionless coordinates [ 11, equation (25). 

Greek symbols 

u, thermal diffusivity [m2/s]; 

B? coefficient of thermal expansion [K-l]; 

% pseudo-similarity variable El], equation (8); 
8, dimensionless temperature [l], equation (9); 
L dynamic viscosity [Ns/m’] ; 
v 
CI 

kinematic viscosity [m2/s]; 
transformed axial coordinate [I], equation 
(8); 

GV, wall shear stress [N/m”]; 

@, d~ensionle~ tem~rat~e El], equation (26); 

4, angular coordinate [rad]; 

JI> stream function [m2/s] ; 
Q buoyancy parameter, I Gr I/Re2, [l] ; 
a*, forced flow parameter, l/Q = Re’/IGrl, [l]. 

Subscript 

07 stagnation condition. 

INTRODUCTION 

LAMINAR heat transfer from a sphere has been the 
subject of numerous analytical and experimental in- 
vestigations from the standpoint of either pure free 
convection or pure forced convection (see, for example 
[l-lo]). The neglect of buoyancy force effects on forced 
convective heat transfer may not be justified when the 
velocity is small and the temperature difference between 
the surface and the ambient fluid is large. Thus, pre- 
dictions of the local heat-transfer rate in the mixed 
convection regime are of practical interest, as are the 
conditions under which the buoyancy-force effects first 
become significant. 

The problem of mixed forced and free convection 
about a sphere has received relatively little attention. 
To the best knowledge of the authors, the only such 
studies which have been reported are the experiments 
work of Yuge [ll] and Klyachko [12] and the 
analytical work of Hieber and Gebhart [13]. These 
studies, both experimental and analytical, were con- 
ducted under the conditions of very small Reynolds 
numbers and Grashof numbers. 

The present study treats combined forced and free 
convective heat transfer around a sphere at large 
Reynolds and Grashof numbers. The analysis encom- 
passes the entire regime of mixed convection, ranging 
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from pure forced convection to pure free convection. 
Both aiding and opposing flows, in which the buoyancy 
force respectively aids and opposes the forced convec- 
tive flow, are considered. In the analysis, the conser- 
vation equations of the boundary fayer are transformed 
such that they can Iend themselves to either Local non- 
similarity or finite-difference soiutions. In the present 
study, an cthcient and very accurate finite-difference 
method due to Keller and Cebeci [ 14$15] is employed 
to solve the system of transformed equations. 

Numerical solutions were carried out and results 
obtained for gases having a Prandtl number of 0.7, 
for both aiding and opposing flows. For the aiding 
flow, the sol~~tions encompassed the range of buoyancy 
parameter fZ between 0 (pure forced convection) and 
X. (pure free convection). The opposing flow solutions 
were for Sz between 0 and - 3.0. 

ANALYSIS 

Consider a sphere of radius R which is situated in 
a flow field with undisturbed oncoming free stream 
velocity M.~ and temperature T, as shown in Fig. 3. 
The convective forced How is assumed to be moving 
upward, while the gravity y acts downward in the 
opposite direction. The surface of the sphere is main- 
tained at a uniform temperature T,,. Let the coordinates 
he chosen such that x measures the distance along the 
surface of the sphere front. the lower stagnation point 
and _V measures the distance normal to the surface. ff 
?, > T,, the buoyancy Force which arises due to the 
temperature difference will aid the forced flow. On the 
other hand. if r,,. < -f,, the resulting buoyancy force 
will oppose the forced Raw, The analysis will aIsa be 
valid for downward flow. in this case, however, the 
.x-coordinate is measured from the upper stagnation 
point, and the aiding and opposing Bows correspond, 
respectively, to T, < T, and XV > T, . 

In the analysis. it will be assumed that the fluid 
properties are constant, escept that the density vari- 
ations within the fluid are allowed to contribute to the 
buoyancy forces. The starting point of the analysis is 
the following boundary layer equations. 

subjected to the boundary conditions 

LI = I = 0. T = r,. at !’ = 0: 

II -+ U(r). T -+ r, as v + ?c’. 
(4) 

In the foregoing equations, the standard symbols are 
defined in the nomenclature and the radial distance 
r(x) is given by 

I’ =z R sin(uiR). (5) 

The local free stream velocity I’I.Y) m general hzr\ il~ 
expression 

from measurements [7], where .-1. Bz 
stants. The corresponding expression 
flow solution is given by 

with ‘4 = 312, B = -l/4, I‘ = 1 80. If z= .- I ;13hO. tic. 
from sine series expansion. 

To facilitate a solution, equations (l)-(4) are trans- 
formed from the (x, I.) coordinates to (5, q) coordinates 
by a proper choice of transforInation variabtes. Since 
the present study covers the entire regime of mixed 
convection. with the buoyancy parameter f-t ranging 
from 0 to x,, it is convenient to carry out the trans- 
formation of the conservat.ion equations separately for 
forced-flow dominated and buoyancy-force dominated 
cases. The combination of the solutions from these two 
cases then encompasses the entire regime of mixed 
forced and free convection. 

For~ef~-~Q~~~ ~~o~~i~u~e~ cme 

In this case the buoyancy force is of the secondary 
importance as compared to the forced convective flow. 
Thus, the transfo~ation can be patterned after that 
for pure forced convection such that the buoyancy 
force effect appears as a parameter. To this end. use is 
made of GGrtler-Meksyn variables given in 1161 

**. &’ & 
;= -_-_ 

I ,n@,. R 
fi = ,...._m_c;... 

q2vRu,. gfff2. 
i8) 

it is noted here that < is a measure of the dimet~sio~lie~~ 
streamwise coordinate around the surface of the sphere 
and tl is a measure of the dimensionless boundary- 
layer thickness. 

With the introduction of a reduced stream function 
,f(& 1) and a dimensionl~s tenl~rature #(& ~1) 

where the stream function $(x+ .v) satisfies the continuity 
equation (1) with 

equations (.l)-(4) can be t~a~sfo~~ into the following 
system of equations: 

,f”‘~;.(g)fjc~‘+fi(f)(l-,f““)ctI(:)Ro 
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in which the primes denote partial derivatives with Buoyancy-force dominated case 

respect to q, When the buoyancy induced flow dominates over 

5 cos(x/R) 
the forced convective flow, one examines the effects of 

y(r) = 1+2--, 
UJum sin&/R) 

the latter on the former. It is, therefore, appropriate 
to transform the conservation equations following the 

(14) 
pattern that is used for pure free convection. In this 
connection, one employs the tr~sfo~ation variables 

(25) 

and the buoyancy parameter a measures the buoyancy along with the reduced stream function F(X, Y) and 
force effects and has the expression the dimensionless temperature 0(X, Y): 

!2 = IGrl/Re’ 05) 

wherein the Grashof number Gr and the Reynolds 
F(X, Y) = 

*(x9 Y) 
@(X, Y) = 

(26) 
~XlGr/t’~’ 

number Re are defined, respectively, as With the introduction of equations (25) and (26), 

Gr = sBtTv - TAR3 
V2 

-, &=UG. 

V 

equations (2)-(4) can be transformed into 

The plus and minus signs in front of the last term 

(16) F...+(l+~~F~_Pi+r(X)R”f~O 

on 
the LHS of equation (11) refer, respectively, to aiding 
and opposing flows. 

=X R?&-~~, 
( ) 

(27) 

The quantities r(f), S(& and a(<) in equation (14) 
can be evaluated when the local free stream velocity 
distribution U(x) is prescribed. For the case of U(x) 

;~+(l+$J+DJ = *($$@$, (28) 

from the potential flow solution given by equation (7), 
for example, one can find 

F’(X, 0) = F(X, 0) = 0, cD(X, 0) = 1, 

F(X, x)) = X(X)Q*‘/2, @(X, co) = 0 
(29) 

6-35 

?=3-5’ 
g-3-2{ 4 

3-5 ’ A = 3(3-5)’ 
(17) where the primes now stand for partial derivatives with 

respect to Y, 
At the lower stagnation point (4 = 0), equations (ll)- 
(13) reduce to 

f”’ + 2j,V + 1 -f’2 &- RB/A2 = 0, (18) 

;P+zf@ = 0, 

f’(0) = f(0) = 0, e(0) = 1, s’(c0) = 1, f?(a) = 0 (20) 

where A = 3/2 for U(x) both from potential flow solu- 
tion and from me~~ements [7]. 

The physical quantities of primary interest are the 
velocity distribution u/W = f’(& v), the temperature 
distribution 6(&r& the local friction factor C,, and 
the local Nusselt number Nu. The last two quantities 
are defined, respectively, by 

c,=z, 
P&Q 

NUJ$ 
From the definitions of wall shear stress r, = 
p(ihJ8y),=~ and local heat-transfer coefficient h = 
qw/( T, - T’), and Fourier’s law q,. = -k(8T/8y)y=0, it 
can be readily shown that 

Cf Re”’ = (2)“’ [(U/um)“P2]f”(& O), (22) 

(23) 

and 

O* = Re2flGrl = l/Q (30) 

o(X) = [W~u,UX&vIum,. x(X) = Whd/X. (31) 

At the stagnation point, equations (27)~(29) can be 
simplified to 

F”‘+2FF”-F’2+A2R*+@=0, (32) 

+“+2F#‘= 0, (33) 

F’(0) = F(0) = 0, Q(O) = 1, 

F’(a) = AR”“, @(oo) = 0. 
(34) 

The streamwise velocity distribution is given by 
u/U = [X/(U/u,)]F’(X, Y)/Q*” and the temperature 
distribution by Q(X, Y). The local friction factor C, 
and the local Nusselt number Nu as defined by 
equation (21) now have the expressions 

C, Re’12 = 2XF”(X, 0)/Q*3’4, 

C,Gr’f4 = C~Re112/~*1i4~ 
(35) 

NuR~-‘~’ = -W(X, O)JCl*1/4, 

NuG~-“~ = -W(X, 0). 
(36) 

In the numerical computations, which covered 
0 $ Q < co (i.e. fz values ranging from pure forced 

The corresponding expressions for the stagnation point 
convection to pure free convection), equations (1 l)-( 13) 

are 
were used for 0 ,< R < 10 and equations (27)-(29) for 

C.,-Re’@ = 0, NuRe-‘12 = -(A)1’2~(0). 
1 < a < o(, (i.e. 1 2 sZ* 3 0). It was verified that the 

(24) two sets of equations yielded the same results. 
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In the numerical results to be presented later, the 
buoyancy force parameter R will be used for the entire 
regime of mixed convection. It is, therefore, convenient 
to know the relationships between F”(X, 0) andf”(& 0) 
and between @‘(X, 0) and O’(& 0). They can be derived 

from equations (22))(23) and (35)-(36) to giv,e 

1 yu, I2 .f”‘(5,0) p(x o) _ __~~ 
,/2 xg”’ Q314 ’ 

1 (c’iu, 1 @y&O) 
(37) 

(D’(X, 0) = / -_-... ~ 
V’2 (1:’ Ql/4 

The corresponding equations for the stagnation point 
are 

F”(0) = ,43:‘,f”(o)/!Y4, W(0) = A1~28’(0)/Ri~4. (38) 

NI'MERIC‘AL SOLl!TIONS 

Solutions of the systems of the partial differential 

equations (1 l)-(13) and (27))(29) were carried out by 
using a finite-difference method due to Keller and 
Cebeci [14,15]. According to this method, equations 

(1 l)-(13) [or equations (27))(29)] are first written in 
the form of a first-order system by introducing new 
unknown functions of q-derivatives. The functions and 

their derivatives in the first-order equations are then 
approximated by centered difference quotients and 
averages at the midpoints of net rectangles in the (<, 11) 

domain or net segments in the 5 and 11 coordinates, 

as required, to yield finite-difference equations with 
accuracy of the order of (A@ and (Aq)“. The resulting 
nonlinear difference equations, along with the corre- 
sponding expressions for the boundary conditions, are 
finally solved by using Newton’s method. The details 
of the solution method can be found in [14, 151 and 
are omitted here. However, it needs to be reiterated 

that this numerical scheme has been shown to be 

simpler and more flexible and efficient to use than 

most other numerical methods including the local non- 
similarity method and to provide numerical results of 
very high accuracy. More importantly, the scheme is 

numerically stable and thus allows computations to be 
carried out extremely close to the Aow separation 

point. 

RESULTS AND DISCLISSION 

Numerical results were obtained for gases having a 

Prandtl number of 0.7. They cover local wall shear 
stress, local surface heat-transfer rate, and velocity and 
temperature distributions for both aiding and opposing 
flows. The buoyancy force parameter Gr/ReZ in the 
computations ranged from 0 (i.e. pure forced convec- 
tion) to r; (i.e. pure free convection with Re’/Gr = 0) 

for aiding flow and from 0 to - 3.0 for opposing flow. 
Since it appears that no experimental information on 
the local free stream velocity distributions for mixed 
forced and free convection around a sphere is available, 
use was made of two expressions from forced convec- 
tion in the calculations. One of these is the potential 
flow solution given by equation (7) and the other from 
the measurements of Frijssling [7] as given by equation 
(6) with A = 1.5, B = -0.4371, C = 0.1481 and 

;;F--Tpj 
U/u,= 1.5(x/R~-0.4371~x/R~+0.148I~~/R!~ 

14 1 ., 

I , 

20 30 40 50 60 70 80 90 

(p, degrees 

Ftci. 1. Angular distributions of the local friction factor. 
Pr = 0.7. 

D = -0.0423. This latter expression of Frossling is 
essentially identical to that given by Tomotika and 
Imai [17] from their experiments and is valid for 
.x/R Q 1.40. Thus, the results to be presented will ter- 
minate at 4 = 90”. 

Figure 1 illustrates the anguiar distributions of the 

local wall shear stress CfRr”’ for the two local free 
stream velocity distributions. It can be seen from the 
figure that the local wall shear increases with increasing 

buoyancy force for aiding flow (Gr/Re” b 0), with a 
resulting delay in the flow separation. This is because 
the buoyancy force inside the boundary layer assists 
the forced flow in acting against the adverse pressure 
gradient. For the opposing flow case (Gr/ReZ < 0). on 
the other hand, the local wall shear is seen to decrease 
as the buoyancy force increases. As a result, the flow 
separation occurs earlier and moves toward the stag- 

nation point. 
An examination of Fig. 1 reveals that for a given 

buoyancy force, the local free stream velocity distri- 
bution from the potential flow model provides wall 
shear that is larger than that provided from the 
experimental measurements of Prossling, with a corre- 
sponding delay in the flow separation. This effect is 
strongly felt for small and moderate buoyancy forces 
for both aiding and opposing flows, particularly at 
large angles away from the stagnation point. However, 
it is interesting to note that for aiding flow with SI rong 
buoyancy forces (e.g. Gr/Re* 3 20), the local wall shear 
tends to become less sensitive to the variation of the 
local free stream velocity distributions. 

The angular distributions of the local Nusselt num- 
ber NuRe-1’2 are shown in Fig. 2. As shown in the 
figure, the local surface heat-transfer rate increases as 
the buoyancy force increases for aiding flow, while an 
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---- U/U,= 1.5 sinWR1 

-u/u_= L5wR)-0.437lk/R~ 
Q2- 

OO 
I 1 I I I I I I 

IO 20 30 40 50 60 70 80 SO 

(p, degrees 

FIG. 2. Angular distributions of the local Nusselt number, 
Pr = 0.1. 

opposite trend is observed for opposing flow. Also, 
for a given buoyancy force, the local Nusselt number 
is seen to decrease with increasing angle from the 
stagnation point. As in the wall shear results, Fig. 2 
indicates that the local surface heat-transfer results for 
small to moderate buoyancy forces depend strongly on 
the variation of the local free stream velocity distri- 
butions. For a given buoyancy force, the potential flow 
velocity distribution is seen to yield local Nusselt num- 
ber results that are larger than those provided by the 
measured velocity distribution of F&sling [7}. How- 
ever, since the measured velocity distribution represents 
a more realistic flow field outside the boundary layer 
than the potential flow, the results from the former are 
believed to be more accurate than those from the latter. 

0.70 I , I , I I I , 
Ie 

-------- Chiang et. a 

“rue- I.J Dtl,,-ln, 

~f-U~~~~~~~_i I 1 
0 IO 20 30 40 50 60 70 eo so 

4, degrees 

FIG. 3. Angular dist~butio~s of the local Nusselt number 
in terms of NuGr-‘14, pt = 0.7. 

Figure 3 shows the angular distributions of the local 
Nusselt number in terms of NuG~-‘/~ for large buoy- 
ancy parameters (5 < Gr/Re2 < co). The curve for 
Gr/Re’ = 00 (i.e. Re2/Gr = 0) corresponds to the case 
of pure free convection. As to be expected, the effects 
of the variation of the local free stream velocity dis- 
tributions on the local Nusselt number diminish com- 
pletely as Gr/Re* increases to co. Also included in the 
figure are the results of Chiang and coworkers [l] for 
pure free convection, which deviate somewhat from the 
present results at large angular positions. 

IO 20 30 40 50 60 70 80 90 + , degrees 

FIG. 4. Relative angular distributions of the local Nusselt 
number, Pr = 0.7. 

The relative changes in the local Nusselt number 
Nu/Nue, where Nue is the Nusselt number at the 
stagnation point, for representative values of Gr/Re2 
are plotted in Fig. 4. As can be seen from the figure, 
the angular dependence of the local Nusselt number 
is greater for low to moderate buoyancy forces (i.e. 
when forced convection is dominant) than for large 
buoyancy forces (i.e. when free convection is dominant). 

To provide a better understanding of the local heat- 
transfer characteristics for the entire regime of mixed 
convection for aiding flow, Fig. 5 has been prepared 
to show the effect of buoyancy forces on the local 
Nusselt number at three representative angular 
positions of 4 = 0, 60 and 90”. The asymptotes at the 
stagnation point (i.e. d, = 0’) for pure forced convection 
(Gr/Re2 = 0) and pure free convection (Gr/Re’ = co) 
are, respectively 

NuRe- ‘1’ = 0.8149, NuRe-Ii2 = 0.4.576W4 (391 

which agree with the corresponding expressions from 
previous studies [6,1]. It should be noted that the 
curve for the case of Q, = 90” with local free stream 
velocity distribution from measurements [7] starts 
from Gr/Re2 = 2. This is because the flow has already 
separated at 4 < 90” for Gr/Re2 c 2. 
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U/u,= 1.5 (X/R)- 0.4371~~/R~+0.1481~x/R~ 

FIG. 5. Heat-transfer results at representatwe angular positions, Pr = 0.7. 

It is of practicaf interest to determine the extent to To illustrate how the buoyancy force affects the 
which the local forced convection Nusselt numbers are velocity and temperature fields in the boundary layer, 
affected by the buoyancy forces and the local free con- representative velocity and temperature profiles at the 
vection Nusselt numbers by the inertia forces. This can stagnation point for several buoyancy parameters 
be most effectively visualized, respectively, in terms of Gr/Re’ are shown in Figs. 7 and 8, respectively. It is 
the ratios Nu/NutorceC, and Nu/Nufree, where Nubrced noted that in the figures the dimensionless coordinate 
and Nur,, are the local Nusselt numbers for pure forced r&z !vRl Ii2 is used as the boundary-layer thickness. It 

Re2/Gr 

I 1 B , , ! I I I 

z ! 
I 

0.8, ’ I II I I I I1 I I 
-4 0 4 8 12 16 20 

Gr/Re2 

Frc. 6. Effects of buoyancy and inertia forces on the stagnation point heat-transfer results, Pr = 0.7. 

and pure free ~nvection, respectively. These ratios for 
the stagnation point are plotted in Fig. 6 as a function 
of the buoyancy parameter, with the Nuo/Nuo.~~~~ curve 
referring to the upper abscissa scale. The departure of 
these ratios from unity provides a direct measure of 
the buoyancy and inertia force effects. If the threshold 
values of significant buoyancy effects are defined by 
5% departures from pure forced convection, the buoy- 
ancy effects become significant at Gr/Re2 = 1.67 and 
- 1.33, respectively for aiding and opposing flows. 
Similarly, with 5% departure from pure free convection 
(Re2/Gr = 0) as the threshold of significant inertia force 
effect, the inertia force is found to become important 
at Re’/Gr = 0.01. 

is evident from Fig. 7 that for aiding flow (Gv/Re’ > O), 
the velocity gradient at the wall increases as the buoy- 
ancy force increases, with an accompanying increase 
in the velocity near the wall region and an overshooting 
of the velocity beyond its local free stream value. For 
the opposing flow (Gr/Re2 -=c 0), on the other hand, the 
effect of the buoyancy force is to reduce the velocities 
compared to those for pure forced convection. As the 
Gr/Re2 values become more negative, S-shaped profiles 
typical of retarded boundary layers are in evidence. 

The temperature profiles in Fig. 8 show that for the 
case of aiding flow, an increase in buoyancy force 
results in an increase in the temperature gradient at 
the wall and a decrease in the thermal boundary-layer 
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FIG. 7. Representative velocity profiles at the stagnation 
point, Pr = 0.7. 

I I I I I 

Gr/Re* -I 

FIG. 8. Representative temperature profiles at the 
stagnation point, Pr = 0.7. 

FIG. 9. Velocity and temperature profiles for Gr/Re’ = 5 at 
representative angular positions, Pr = 0.7. 

thickness. The opposite trends are in evidence for the 
case of opposing flow. 

Figure 9 illustrates the velocity and temperature 
profiles for a given buoyancy force parameter of 
Gr/Re2 = 5 at several angular locations, with the local 
free stream velocity U(x) from measurements of 
FrGssling [7]. Both the velocity and temperature 
gradients at the wall are seen to decrease as the angle 
$I increases from 0 to 90”, with a corresponding 
increase in the flow and thermal boundary-layer thick- 
nesses. A noteworthy behavior in the velocity profiles 
for a given buoyancy parameter is that whereas the 
velocity gradient at the wall decreases with increasing 
angle, the overshooting of the velocity beyond its local 
free stream value increases as the angle increases. Thus, 
the velocity profiles cross each other near the wall. 
The velocity and temperature profiles with U(x) from 
potential flow solution for the same buoyancy force 
effect exhibit a pattern similar to that shown in Fig. 9 
and are, therefore, omitted here. 

It is interesting to compare the present analytical 
results with those from experiments. For Gr = 200, 
Yuge’s empirical formulas for mixed convection from 
his experiments [ll] provided average Nusselt num- 
bers NuRe-“’ of 0.706 and 1.643, respectively for 
Gr/Re2 = 1 and 50. From the present results in Fig. 2, 
the local Nusselt number NuRe-*” is seen to range 
from 0.841 to 0.486 for Gr/Re2 = 1 and from 1.312 
to 1.071 for Gr/Re2 = 50 as 4 increases from 0” (stag- 
nation point) to 80”. The agreement between the results 
from analysis and experiments is fair for Gr/Re’ = 1, 
but is very poor for GrjRe2 = 50. The discrepancies in 
the two sets of results are to be expected, because 
Yuge’s experiments were conducted at very low 
Reynolds and Grashof numbers (Re = 1.8 - 55, Gr = 
0.125 z 230), whereas the present analysis is based on 
boundary-layer approximations which are valid only 
for large Reynolds and Grashof numbers. 

CONCLUSIONS 

From the results of the present analysis on mixed 
forced and free convection about a sphere, it is found 
that for gases having a Prandtl number of 0.7 significant 
buoyancy force effects on pure forced convection are 
encountered for GrJRe’ > 1.67 and for Gr/Re’ f 

- 1.33, respectively for aiding and opposing flows. In 
addition, the inertia force effects on pure free convec- 
tion are found to be important when ReZJGr > 0.01. 
The local wall shear and local Nusselt number results 
exhibit a strong dependence on the variation of the 
local free stream velocities for small to moderate buoy- 
ancy forces for both aiding and opposing flows, par- 
ticularly at large angular positions in the region near 
the point of flow separation. 
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ANALYSE DE LA CONVECTION MIXTE AUTOUR DUNE SPHEREi 

Rbsumh-On &die l’&oulement et Ie transfert thermique par convection natureiie ou for&e autour 
dune sphere. Les equations de conservation des couches limites sont rtsolues par une methode de 
differences finies. On pr$ente les rbultats numtriques pour des gaz ayant un nombre de Prandtl egal 
a 47 et des parametres qui couvrent tout le regime de la convection mixte, depuis la convection for&e 
pure jusqu’a la convection naturelle pure. On trouve que le facteur local de frottement et le nombre de 
Nusseit local au~entent lorsque les forces d’Archim&de aident I’&oulement et dkroissent dans le cas 
contraire. On examine ies effets de la variation des vitesses locales de I’icouiement libre, sur ie frottement 
parietal et le transfert thermique. Les effets des forces d’Archim&le sur la convection for&e deviennent 
significatifs pour Gr/Re’ > 1,67 et < - 1.33 respectivement pour les koulements en cocourant ou en 
opposition. Les effets des forces d’inertie sont significatifs pour Re*/Gr > 0,Ol. Les profils de vitesse 
montrent un depassement de la vitesse de l’ecouiement libre pour le cas favorable et une forme en S 
pour le cas de l’opposition. 

UNTERSUCHUNG DER GEMISCHTEN ERZWUNGENEN UND FREIEN 
KONVEKT~~N OBERHALB EINER KLJGEL 

Zusammenfassung--Es werden die Stromungs- und Warmeubergangsverhaltnisse bei laminarer. 
gemischter erzwungener und freier Konvektion oberhalb einer Kugel untersucht. Die transformierten 
Erhaltungsglei~ungen Wr die nicht iihnlichen Grenzschichten werden mit Hilfe eines 
Differen~nve~ahrens gel&t. Fur Gase mit Pr = 0,7 und Auftriebsparameter, die den gesamten Bereich 
der gemischten Konvektion von der reinen erzwungenen bis zur reinen freien Konvektion umfassen, 
werden numerische Ergebnisse angegeben. Im aligemeinen ergibt sich, dab der ortliche Widerstandsbeiwert 
und die Grtliche Nusselt-Zahl mit zunehmenden Auftriebskraften bei gleichgecichteter Stromung 
zunehmen, bei entgegengesetzter Striimung abnehmen. Der EinfluB der Aenderung der ortlichen 
Anstr~mgeschwindi~eiten auf die Wandschubspannungen und den W~rme~bergang wird ebenfalls 
untersucht. Der Warmedbergang bei erzwungener Konvektion wird merklich beeinfluat durch die 
Auftriebskrafte bei Gr/Re2 > 1,67 fur gleichgerichtete Stromung, bzw. Gr/Re’ < - I,33 fur entgegen- 
gerichtete Striimung. Der EinfluR der Triigheitskriifte auf die freie Konvektion ist fur Re’/Gr > O,Ol, von 
Bedeutung. Bedingt durchden Auftrieb werdendie Ges~h~ndigkeitsprofiiever~ndert; bei gleichgerichteter 
Str~mung werden die ~rtlichen Anstr6mgeschwindigkeiten ~berschritten, bei entgegengesetzter Str~mung 

ergibt sich ein S-fiirmiger Verlauf. 

WCCJIEAOBAHME CMElUAHHOfi BbIHYXQEHHOfi R ECTECTBEHHOti 
KOHBEK4~~ OKOJIO C@EPbi 

AHIIOTII~IW - lIpomneH0 5icCflenoBaiiHe XapaKTepecTHx noToxa n TennooGMeHa npu naMeriapwoR 
cMemami0~ BbIHyX@zHHOi H ecTecTBeIiHoti KOHBeKllIfH OKOn C&pbr. rIpeo6pa30BaHue ypanueriaa 
cOXpa~e~~K~nn~~TOMO~enbnbrxnorpaHHYnbIxcnoe~pewanocbcnOMOmb~Ko~e~o-pa3HocTNoro 

Mer0p.a. %fcneHHbIe pe3ynbTaTbI &WI ra3OB c YEcnOM ~paHJtTn& pafNbIM 0,7, rIpe&TaBireHbXRJm 

IIM~KOrO~H~~30HaCB060iUIOKOHBeBfHBITMX I'IapaMeTpOB, xapa~ep~3y~~~x Becb peX0ibi we- 

~HF~~~KOHB~K~HOTSHCTOB~IH~~~~HHO~~O~HCTO~CT~TB~HHO~. %di~eHO, 'iT0 B o6weM Cl'ty'iae 

mnOKanbHbIfi KO3@@qUeHTTpeHHR HnOKaAbHOe WCnO WyCCenbTayBenwYRBaroTccrrCyBenR9eH~eM 
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no~beMHofi~mbInpH~nym0h4 TeqeHmi H yMeHbmafoTcr c eeysenmemiehiemy~ae npoT5iBoToKa. 

klCCneAOBaJWJCb TaKXCe BJMIIHHe JlOKaJlbHbIX CKOpOCT& IiCBO3hlyUeHHO~O nOTOKa Ha npHCTeHHbl# 

CABHT H Tennoo6MeH Ha noBepxHoCTEi. KaK rIOKa3bmaEoT PBHHbIe noTenJtoo6MeHy,BnH%mHe non%- 

~MHO~CH~~IH~B~IH~~A~~K)KOHB~KURH)CT~HOBHTCR~H~YHT~~H~~M~~H Gr/Re’> 1,67~< -1,33 
J&I’M ClIy-rHOrO nOTOKa Ii IIpOTHBOTOKa. HaiiAeHO,YTO BJIHRHHe CHJlbl HHepqHH Ha ceO6O~Hyio KOH- 

BeKWilO CyllWTBeHHO npH Re2/Gr> 0,Ol. CKO&WCTHble llpO+UIH, Ha KOTOpbIe OK83blBMT BJlHIlHHe 

I-IOAbeMHaS CSfAa, llOKa3blBalOT OTKJIOHeHHe OT JlOKUIbHOii CKOPOCTH CBO6OAHOrO TWeHHII B CJl)‘qae 

CllYTHOrO nOTOKaHHMeK?T&O6pa3HyH) 4OpMy lJJlJl IlpOTHBOTOKa. 
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