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Abstract—An analysis is performed to study the flow- and heat-transfer characteristics of laminar mixed
forced and free convection about a sphere. The transformed conservation equations of the nonsimilar
boundary layers are solved by a finite difference method. Numerical results for gases having a Prandtl
number of 0.7 are presented for buoyancy parameters which cover the entire regime of mixed convection,
ranging from pure forced convection to pure free convection. In general, it is found that both the local-
friction factor and the local Nusselt number increase with increasing buoyancy force for aiding flow and
decrease with increasing buoyancy force for opposing flow. The effects of the variation of the local free
stream velocities on the wall shear and surface heat-transfer results are also examined. With respect to
the heat-transfer results, the buoyancy force effects on forced convection become significant for
Gr/Re* > 1.67 and < —1.33, respectively for aiding and opposing flows. The inertia force effects on free
convection are found to be significant for Re?/Gr > 0.01. The buoyancy-affected velocity profiles exhibit

an overshoot beyond the local free stream velocity for aiding flow and an S-shape for opposing flow.

NOMENCLATURE

local friction factor [1};

reduced stream function [1], equation (26);
reduced stream function [1], equation (9);
gravitational acceleration [m/s*];

local heat-transfer coefficient [W/m? K];
Grashof number, gB(T,,— T,,)R3/v* [1];
thermal conductivity [W/mK];

local Nusselt number, #R/k [1];

Prandtl number [17];

local surface heat-transfer rate per unit area
[W/m?];

radius of sphere [m];

radial distance from symmetrical axis to
surface [m];

Reynolds number, u,, R/v [1];

fiuid temperature [K];

wall temperature [K];

free stream temperature [K];

local free stream velocity [m/s];

velocity component in x direction [m/s];
undisturbed oncoming free stream velocity
[m/s];

velocity component in y direction [m/s];
dimensional coordinates shown in Fig. 3 [m]

s

X, Y, dimensionless coordinates [1], equation (25).

Greek symbols

a,
B )
n,
o,
I
v,

6,

thermal diffusivity [m?/s];
coefficient of thermal expansion [K™1];
pseudo-similarity variable { 1], equation (8);

dimensionless temperature [1], equation (9);

dynamic viscosity [Ns/m?];
kinematic viscosity [m?/s];
transformed axial coordinate [1], equation

®);
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1.,  wall shear stress [N/m?];

@, dimensionless temperature [ 1], equation (26};
&, angular coordinate [rad];

¥,  stream function [m?/s];

Q,  buoyancy parameter, |Gr|/Re?, [1];

Q*,  forced flow parameter, 1/Q = Re*/|Gr|, [1].

Subscript
0, stagnation condition.

INTRODUCTION

LAMINAR heat transfer from a sphere has been the
subject of numerous analytical and experimental in-
vestigations from the standpoint of either pure free
convection or pure forced convection (see, for example
[ 1-101). The neglect of buoyancy force effects on forced
convective heat transfer may not be justified when the
velocity is small and the temperature difference between
the surface and the ambient fluid is large. Thus, pre-
dictions of the local heat-transfer rate in the mixed
convection regime are of practical interest, as are the
conditions under which the buoyancy-force effects first
become significant.

The problem of mixed forced and free convection
about a sphere has received relatively little attention.
To the best knowledge of the authors, the only such
studies which have been reported are the experimental
work of Yuge [11} and Klyachko [12] and the
analytical work of Hieber and Gebhart [13]. These
studies, both experimental and analytical, were con-
ducted under the conditions of very small Reynolds
numbers and Grashof numbers.

The present study treats combined forced and free
convective heat transfer around a sphere at large
Reynolds and Grashof numbers. The analysis encom-
passes the entire regime of mixed convection, ranging
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from pure forced convection to pure free convection.
Both aiding and opposing flows, in which the buoyancy
force respectively aids and opposes the forced convec-
tive flow, are considered. In the analysis, the conser-
vation equations of the boundary layer are transformed
such that they can lend themselves to either local non-
similarity or finite-difference solutions. In the present
study, an efficient and very accurate finite-difference
method due to Keller and Cebeci [ 14, 15] is employed
1o solve the system of transformed equations.

Numerical solutions were carried out and results
obtained for gases having a Prandt]l number of 0.7,
for both aiding and opposing flows. For the aiding
flow, the solutions encompassed the range of buoyancy
parameter £ between O (pure forced convection) and
0 {pure free convection). The opposing flow solutions
were for Q between 0 and —3.0.

ANALYSIS

Consider a sphere of radius R which is situated in
a flow field with undisturbed oncoming free stream
velocity u,, and temperature T, as shown in Fig. 3.
The convective forced flow is assumed to be moving
upward, while the gravity g acts downward in the
opposite direction. The surface of the sphere is main-
tained at a uniform temperature T,,. Let the coordinates
be chosen such that x measures the distance along the
surface of the sphere from the lower stagnation point
and vy measures the distance normal to the surface. If
T, > T.., the buoyancy force which arises due to the
temperature difference will aid the forced flow. On the
other hand. if T,, < T,, the resulting buoyancy force
will oppose the forced flow. The analysis will also be
valid for downward flow. In this case, however, the
x-coordinate is measured from the upper stagnation
point, and the aiding and opposing flows correspond,
respectively, to T, < T, and T,, > T,..

In the analysis, it will be assumed that the fluid
properties are constant, except that the density vari-
ations within the fluid are allowed to contribute to the
buoyancy forces. The starting point of the analysis &
the following boundary layer equations.

— () o+ - (re) = 0, n
€ «y
2}
eT éT &FT )
U = oy (3)
X &y oyt

subjected to the boundary conditions
i=r=0 T=T,atr=0

L 4
i — Ulx),

T—T, as y—.

In the foregoing equations, the standard symbols are
defined in the nomenclature and the radial distance
r{x) is given by

# = Rsin{x/R). 5
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The local free stream velocity U(x) in general has the
expression

L [ X Fx xS 2%
from measurements [7], where 4. B, (. D, are con-
stants, The corresponding expression from potential
flow solution is given by
v Fsin{x/R) i

.
with 4 = 3/2, B= —1/4, (= 1/80, D = — 173360, clc.
from sine series expansion.

To facilitate a solution, equations {1)-{4) are trans-
formed from the (x, v) coordinates to (&, ) coordinates
by a proper choice of transformation variables. Since
the present study covers the entire regime of mixed
convection, with the buoyancy parameter £ ranging
from 0 to oc, it is convenient to carry out the trans-
formation of the conservation equations separately for
forced-flow dominated and buoyancy-force dominated
cases. The combination of the solutions from these two
cases then encompasses the entire regime of mixed
forced and free convection.

Forced-flow dominated case

In this case the buoyancy force is of the secondary
importance as compared to the forced convective flow.
Thus, the transformation can be patterned after that
for pure forced convection such that the buoyancy
force effect appears as a parameter, To this end, use i
made of Gortler-Meksyn variables given in [ 16]

fx U dx U
I
T R, 5
1t is noted here that & is a measure of the dimensiontess
streamwise coordinate around the surface of the sphere
and # is a measure of the dimensionless boundary-
layer thickness.

With the introduction of a reduced stream function
(& 1) and a dimensionless temperature 8(, )

wix, ) ;o de -1,
----- 0(S, ) = T

{8}

pAt ) 19}
where the stream function ¥ (x, v} satisfies the continuity
equation {1} with

L IS
! ( lp}v oEm e - ﬁ__, (}.w)’
¥ oex

e (10
rﬁyr 1y

H

equations (1)-(4) can be transformed into the following
system of equations:

ST+ =)+ A0

= 25(;” f;f ()
o<

08 of
C ’(V:/..}\ “‘2)

1

— G A D e * ",7,..,»),,.
Prﬂ + (&) f0 2@(1 & 6 3z,
fE0=fE0=0, 60=1

£13y
fExy=1, 6 »1=0



Free convection about a sphere

in which the primes denote partial derivatives with
respect to #,

_ _"_6__ cos{x/R}

o= U/uw sin(x/R)’

5(&y=2¢ (E U lu (U i) (19
_ ., &sin(x/R)

O Gy

and the buoyancy parameter Q measures the buoyancy
force effects and has the expression

= |Gr|/Re? (15)
wherein the Grashof number Gr and the Reynolds
number Re are defined, respectively, as

_ 3
gB(T,—T,)R  Re= Uqg R.
v? v

Gr = (16}
The plus and minus signs in front of the last term on
the LHS of equation (11) refer, respectively, to aiding
and opposing flows.

The quantities y(&), §(&), and A(¢) in equation (14)
can be evaluated when the local free stream velocity
distribution U(x) is prescribed. For the case of U(x)
from the potential flow solution given by equation (7),
for example, one can find

6-3 3-2 4
= ——-~§, = 5, A= .1
3¢ 3-¢ 33-9
At the lower stagnation point (¢ = 0), equations {11)-
{13) reduce to

T2+ 12 100/4% =

(18)

1 2
5028 = (19)

J0)=10)=0, 00)=1, flwo)=1, Blec) =0 (20)

where A = 3/2 for U(x) both from potential flow solu-
tion and from measurements [7].

The physical quantities of primary interest are the
velocity distribution u/U = f'(£, ), the temperature
distribution 6(¢, ), the local friction factor C,, and
the local Nusselt number Nu. The last two quantities
are defined, respectively, by

T
Cy=—3=, Nu=—.
=azp MR
From the definitions of wall shear stress 7, =
w(0u/dy),~o and local heat-transfer coefficient h =
4T~ T), and Fourier’s law q,, = ~k(@T/0y), =0, it
can be readily shown that

1)

CrRe? = 2P P[(Ufuno P /E2] f1(E,0),
-CrGri/* = QVAC,Rel”, 2
NuRe™ ' = —[(Ujuo)/(28)**]0(¢, 0), 23
NuGr~Y* = NuRe 12 /Q1/4, @)

The corresponding expressions for the stagnation point
are

CrRe'? =0, NuRe Y2 = —(4)'20(0). (24)
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Buoyancy-force dominated case

When the buoyancy induced flow dominates over
the forced convective flow, one examines the effects of
the latter on the former. It is, therefore, appropriate
to transform the conservation equations following the
pattern that is used for pure free convection. In this
connection, one employs the transformation variables
=X y=2 G
X= T Y=% |Gr| (25
along with the reduced stream function F(X, Y) and

the dimensionless temperature ®(X, Y):

vX|Gr|'®’ T,-T.

With the introduction of equations (25) and (26),
equations (2)—(4) can be transformed into

F(X,Y)= OX,Y)= (26)

in X
(12588 X e _pe g sxnr+ 0% g
sin X X
oF _ oF
- 't FU
=X (F ox ax) @
1 Xcos X' ad oF
il y — Fl___ 7
0" (1+ — )Frp X( =~ ® ) (28)
FI(X,0)= F(X,00= 0, ®(X,0)=

{29)

P(X, 0) = f(X)¥*?, ®(X, 0 )—-0

where the primes now stand for partial derivatives with
respect to ¥,

Q* = Re¥/|Gr| = 1/Q (30)

and

o(X) = [U/uoo)/X] (U/“oo) xX)=Ulu)X. (31)
At the stagnation point, equations (27)~(29) can be

simplified to

F"4+2FF —F2 4+ A2Q0% + 0 = 0, (32)
1
e @ 4 2F QY =, (33)
Pr
F(0) = F(0) = =1,
©=FO) =0, ®0) .

F(c0) = AQ*12, ®(c0) = 0,

The streamwise velocity distribution is given by
u/U = [X/(U/u,)|F'(X, Y)/Q*"? and the temperature
distribution by ®(X, Y). The local friction factor C,
and the local Nusselt number Nu as defined by
equation (21) now have the expressions

C Re'? = 2XF"(X, 0)/Q*¥*,

CfGl‘l’m = C;Re”z/’Q* 1{4’ (35)
NuRe™'2 = —@/(X, 0)/Q*1/4, 36
NuGr-I/‘t — "'(I)/(X, 0) ( )

In the numerical computations, which covered
0<Q < o (ie. Q values ranging from pure forced
convection to pure free convection), equations (11)-(13)
were used for 0 < Q < 10 and equations (27)-(29) for
1€<Q< o (ie 12Q*20) It was verified that the
two sets of equations yielded the same results.
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In the numerical results to be presented later, the
buoyancy force parameter Q will be used for the entire
regime of mixed convection. 1t is, therefore, convenient
to know the relationships between F"(X,0) and f"(£, 0)
and between ®'(X, 0) and 6'(¢,0). They can be derived
from equations (22)-(23) and (35)~(36) to give

4 2 g
Poo . L R e

\/ -]
(37
I (U, )0, 0)
(X, 0)= —— ol
( ) \/2 él,r- Ql,r4

The corresponding equations for the stagnation point
are

F'(0) = A2 f7(0)/Q%*, @(0) = AY20(0)/Q%*. (38)

NUMERICAL SOLUTIONS

Solutions of the systems of the partial differential
equations (11)—(13) and (27)-(29) were carried out by
using a finite-difference method due to Keller and
Cebeci [14, 15]. According to this method, equations
(11)—(13) [or equations (27)—(29)] are first written in
the form of a first-order system by introducing new
unknown functions of #-derivatives. The functions and
their derivatives in the first-order equations are then
approximated by centered difference quotients and
averages at the midpoints of net rectangles in the (£, »)
domain or net segments in the ¢ and 5 coordinates,
as required, to yield finite-difference equations with
accuracy of the order of (A¢)* and (An)?. The resulting
nonlinear difference equations, along with the corre-
sponding expressions for the boundary conditions, are
finally solved by using Newton’s method. The details
of the solution method can be found in [14, 15] and
are omitted here. However, it needs to be reiterated
that this numerical scheme has been shown to be
simpler and more flexible and efficient to use than
most other numerical methods including the local non-
similarity method and to provide numerical results of
very high accuracy. More importantly, the scheme is
numerically stable and thus allows computations to be
carried out extremely close to the flow separation
point.

RESULTS AND DISCUSSION

Numerical results were obtained for gases having a
Prandtl number of 0.7. They cover local wall shear
stress, local surface heat-transfer rate, and velocity and
temperature distributions for both aiding and opposing
flows. The buoyancy force parameter Gr/Re® in the
computations ranged from 0 (ie. pure forced convec-
tion) to oo (i.e. pure free convection with Re’/Gr = 0)
for aiding flow and from 0 to — 3.0 for opposing flow.
Since it appears that no experimental information on
the local free stream velocity distributions for mixed
forced and free convection around a sphere is available,
use was made of two expressions from forced convec-
tion in the calculations. One of these is the potential
flow solution given by equation (7) and the other from
the measurements of Frossling [ 7] as given by equation
(6) with 4 =15 B=-04371, C=0.1481 and
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18 T T T T T T

- === U/ug= L5 Sin(x/R) z
18+ o / //
Ul 15(0/R)-0.4371(x/R)" + 01481(x /R)®
//
1ak -00423(/R) 7
yd

.

1
10

¢, degrees

FiG. 1. Angular distributions of the local friction factor.
Pr=07.

D = -0.0423. This latter expression of Frossling is
essentially identical to that given by Tomotika and
Imai [17] from their experiments and is valid for
x/R < 1.40. Thus, the results to be presented will ter-
minate at ¢ = 90°.

Figure 1 illustrates the anguiar distributions of the
local wall shear stress C;Re'"* for the two local free
stream velocity distributions. It can be seen from the
figure that the local wall shear increases with increasing
buoyancy force for aiding flow (Gr/Re* > 0), with a
resulting delay in the flow separation. This is because
the buoyancy force inside the boundary layer assists
the forced flow in acting against the adverse pressure
gradient. For the opposing flow case (Gr/Re® < 0), on
the other hand, the local wall shear is seen to decrease
as the buoyancy force increases. As a result, the flow
separation occurs earlier and moves toward the stag-
nation point.

An examination of Fig. 1 reveals that for a given
buoyancy force, the local free stream velocity distri-
bution from the potential flow model provides wall
shear that is larger than that provided from the
experimental measurements of Frossling, with a corre-
sponding delay in the flow separation. This effect is
strongly felt for small and moderate buoyancy forces
for both aiding and opposing flows, particularly at
large angles away from the stagnation point. However,
it is interesting to note that for aiding flow with strong
buoyancy forces (e.g. Gr/Re* > 20), the local wall shear
tends to become less sensitive to the variation of the
local free stream velocity distributions.

The angular distributions of the local Nusselt num-
ber NuRe Y are shown in Fig. 2. As shown in the
figure, the local surface heat-transfer rate increases as
the buoyancy force increases for aiding flow, while an



Free convection about a sphere

e YUy = 1.5 SINIX/R) \
, 0
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FiG. 2. Angular distributions of the local Nusselt number,
Pr=07.

opposite trend is observed for opposing flow. Also,
for a given buoyancy force, the local Nusselt number
is seen to decrease with increasing angle from the
stagnation point. As in the wall shear results, Fig. 2
indicates that the local surface heat-transfer results for
small to moderate buoyancy forces depend strongly on
the variation of the local free stream velocity distri-
butions. For a given buoyancy force, the potential flow
velocity distribution is seen to yield local Nusselt num-
ber results that are larger than those provided by the
measured velocity distribution of Frossling [7]. How-
ever, since the measured velocity distribution represents
a more realistic flow field outside the boundary layer
than the potential flow, the results from the former are
believed to be more accurate than those from the latter.

0.70 T T T T T T T T
ls

0851

........ Chiang et. al [ 1]

= Ulug® 1.5 sin{x/R} X

035 Ulug® L5(/R)- 04BTIO/RY i
+04481 (x/R- 0.0423 (/R
1 i 1 1 1 i 1 1
030576 20 30 40 S0 60 70 80 B0

¢, degrees

FiG. 3. Angular distributions of the local Nusselt number
in terms of NuGr~ 4% Pr=0.7.
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Figure 3 shows the angular distributions of the local
Nusselt number in terms of NuGr~'/* for large buoy-
ancy parameters (5 < Gr/Re? < ). The curve for
Gr/Re? = oo (i.e. Re?/Gr = 0) corresponds to the case
of pure free convection. As to be expected, the effects
of the variation of the local free stream velocity dis-
tributions on the local Nusselt number diminish com-
pletely as Gr/Re? increases to co. Also included in the
figure are the results of Chiang and coworkers [1] for
pure free convection, which deviate somewhat from the
present results at large angular positions.

1.0

08

=== U/ug® 1.5 sin (x/R)

o4l U/ugs LE(/R)-0.4371 (x/R)®
+0.4481 (/R -0.0423 tr/RY
a3k
0.2 i 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90

¢, degrees

Fi6. 4. Relative angular distributions of the local Nusselt
number, Pr=0.7.

The relative changes in the local Nusselt number
Nu/Nuy, where Nuy is the Nusselt number at the
stagnation point, for representative values of Gr/Re*
are plotted in Fig. 4. As can be seen from the figure,
the angular dependence of the local Nusselt number
is greater for low to moderate buoyancy forces (ie.
when forced convection is dominant) than for large
buoyancy forces (i.e. when free convection is dominant).

To provide a better understanding of the local heat-
transfer characteristics for the entire regime of mixed
convection for aiding flow, Fig. 5 has been prepared
to show the effect of buoyancy forces on the local
Nusselt number at three representative angular
positions of ¢ = 0, 60 and 90°. The asymptotes at the
stagnation point (i.e. ¢ = 0°) for pure forced convection
(Gr/Re* = 0) and pure free convection (Gr/Re* = oo)
are, respectively

NuRe ™' =08149, NuRe 2 =0.4576Q4* (39)

which agree with the corresponding expressions from
previous studies [6, 1]. It should be noted that the
curve for the case of ¢ = 90° with local free stream
velocity distribution from measurements [7] starts
from Gr/Re® = 2. This is because the flow has already
separated at ¢ < 90° for Gr/Re? < 2.
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F1G. 5. Heat-transfer results at representative angular positions, Pr = 0.7,

It is of practical interest to determine the extent to
which the local forced convection Nusselt numbers are
affected by the buoyancy forces and the local free con-
vection Nusselt numbers by the inertia forces. This can
be most effectively visualized, respectively, in terms of
the ratios Nu/Nutoreeq and Nu/Nujee, Where Nugorceq
and Nug. are the Jocal Nusselt numbers for pure forced

To illustrate how the buoyancy force affects the
velocity and temperature fields in the boundary layer,
representative velocity and temperature profiles at the
stagnation point for several buoyancy parameters
Gr/Re?* are shown in Figs. 7 and 8, respectively. It is
noted that in the figures the dimensionless coordinate
V(1 /vR)'* is used as the boundary-layer thickness. It

Re /Gr

402 O 0
o L3 Nug/Nug free
£
2t .
~
£
< Lk
g Nug/Nu, forced
g 1ok
so'
z
:o 0.9"
2

0‘8 1 1 i I 1

~a 0 4 8 12 16 20

Gr/Re’

Fi1G. 6. Effects of buoyancy and inertia forces on the stagnation point heat-transfer results, Pr = 0.7,

and pure free convection, respectively. These ratios for
the stagnation point are plotted in Fig. 6 as a function
of the buoyancy parameter, with the Nuo/Nug free CUrve
referring to the upper abscissa scale. The departure of
these ratios from unity provides a direct measure of
the buoyancy and inertia force effects. If the threshold
values of significant buoyancy effects are defined by
5%, departures from pure forced convection, the buoy-
ancy effects become significant at Gr/Re* = 1.67 and
—1.33, respectively for aiding and opposing flows.
Similarly, with 5%, departure from pure free convection
(Re*/Gr = 0)as the threshold of significant inertia force
effect, the inertia force is found to become important
at Re?/Gr = 0.01.

is evident from Fig. 7 that for aiding flow (Gr/Re* > 0),
the velocity gradient at the wall increases as the buoy-
ancy force increases, with an accompanying increase
in the velocity near the wall region and an overshooting
of the velocity beyond its local free stream value. For
the opposing flow {Gr/Re® < 0), on the other hand, the
effect of the buoyancy force is to reduce the velocities
compared to those for pure forced convection. As the
Gr/Re?* values become more negative, S-shaped profiles
typical of retarded boundary layers are in evidence.
The temperature profiles in Fig. 8 show that for the
case of aiding flow, an increase in buoyancy force
results in an increase in the temperature gradient at
the wall and a decrease in the thermal boundary-layer
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Fi1G. 7. Representative velocity profiles at the stagnation
point, Pr = 0.7.
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F1G. 8. Representative temperature profiles at the
stagnation point, Pr = 0.7,
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F1G. 9. Velocity and temperature profiles for Gr/Re” = 5 at
representative angular positions, Pr = 0.7.

thickness. The opposite trends are in evidence for the
case of opposing flow.

Figure 9 illustrates the velocity and temperature
profiles for a given buoyancy force parameter of
Gr/Re* = 5 at several angular locations, with the local
free stream velocity U(x) from measurements of
Frossling [7]. Both the velocity and temperature
gradients at the wall are seen to decrease as the angle
¢ increases from 0 to 90°, with a corresponding
increase in the flow and thermal boundary-layer thick-
nesses. A noteworthy behavior in the velocity profiles
for a given buoyancy parameter is that whereas the
velocity gradient at the wall decreases with increasing
angle, the overshooting of the velocity beyond its local
free stream value increases as the angle increases. Thus,
the velocity profiles cross each other near the wall.
The velocity and temperature profiles with U(x) from
potential flow solution for the same buoyancy force
effect exhibit a pattern similar to that shown in Fig. 9
and are, therefore, omitted here.

It is interesting to compare the present analytical
results with those from experiments. For Gr = 200,
Yuge’s empirical formulas for mixed convection from
his experiments {11] provided average Nusselt num-
bers NuRe™* of 0.706 and 1.643, respectively for
Gr/Re? =1 and 50. From the present results in Fig. 2,
the local Nusselt number NuRe™'/? is seen to range
from 0.841 to 0.486 for Gr/Re? =1 and from 1.312
to 1.071 for Gr/Re* = 50 as ¢ increases from 0° (stag-
nation point) to 80°. The agreement between the results
from analysis and experiments is fair for Gr/Re® =1,
but is very poor for Gr/Re? = 50. The discrepancies in
the two sets of results are to be expected, because
Yuge’s experiments were conducted at very low
Reynolds and Grashof numbers (Re = 1.8 ~ 55, Gr =
0.125 ~ 230), whereas the present analysis is based on
boundary-layer approximations which are valid only
for large Reynolds and Grashof numbers.

CONCLUSIONS

From the results of the present analysis on mixed
forced and free convection about a sphere, it is found
that for gases having a Prandtl number of 0.7 significant
buoyancy force effects on pure forced convection are
encountered for Gr/Re® > 1.67 and for Gr/Re* <
— 1.33, respectively for aiding and opposing flows. In
addition, the inertia force effects on pure free convec-
tion are found to be important when Re?/Gr > 0.01.
The local wall shear and local Nusselt number results
exhibit a strong dependence on the variation of the
local free stream velocities for small to moderate buoy-
ancy forces for both aiding and opposing flows, par-
ticularly at large angular positions in the region near
the point of flow separation.
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ANALYSE DE LA CONVECTION MIXTE AUTOUR D'UNE SPHERE

Résumé—On étudie Pécoulement et le transfert thermique par convection naturelle ou forcée autour
d’une sphére. Les équations de conservation des couches limites sont résolues par une méthode de
différences finies. On présente les résultats numériques pour des gaz ayant un nombre de Prandtl égal
40,7 et des paramétres qui couvrent tout le régime de la convection mixte, depuis la convection forcée
pure jusqu’a la convection naturelle pure. On trouve que le facteur local de frottement et le nombre de
Nusselt local augmentent lorsque les forces d’Archiméde aident 'écoulement et décroissent dans le cas
contraire. On examine les effets de la variation des vitesses locales de 'écoulement libre, sur le frottement
pariétal et le transfert thermique. Les effets des forces d’Archiméde sur la convection forcée deviennent
significatifs pour Gr/Re® > 1,67 et < — 1,33 respectivement pour les écoulements en cocourant ou en
opposition. Les effets des forces d’inertie sont significatifs pour Re?/Gr > 0,01. Les profils de vitesse
montrent un dépassement de la vitesse de I'écoulement libre pour le cas favorable et une forme en §
pour le cas de Popposition.

UNTERSUCHUNG DER GEMISCHTEN ERZWUNGENEN UND FREIEN
KONVEKTION OBERHALB EINER KUGEL

Zusammenfassung—Es werden die Stromungs- und Wirmeibergangsverhdltnisse bei laminarer,
gemischter erzwungener und freier Konvektion oberhalb einer Kugel untersucht. Die transformierten
Erhaltungsgleichungen fiir die nicht &hnlichen Grenzschichten werden mit Hilfe eines
Differenzenverfahrens gelst. Fiir Gase mit Pr = 0,7 und Aufiriebsparameter, die den gesamten Bereich
der gemischten Konvektion von der reinen erzwungenen bis zur reinen freien Konvektion umfassen,
werden numerische Ergebnisse angegeben. Im aligemeinen ergibt sich, daf der 6rtliche Widerstandsbeiwert
und die ortliche Nusselt-Zahl mit zunehmenden Auftriebskraften bei gleichgerichteter Strémung
zunehmen, bei entgegengesetzter Stromung abnehmen. Der EinfluB der Aenderung der ortlichen
Anstromgeschwindigkeiten auf die Wandschubspannungen und den Wirmeiibergang wird ebenfalls
untersucht. Der Wirmeiibergang bei erzwungener Konvektion wird merklich beeinfluft durch die
Auftriebskriifte bei Gr/Re? > 1,67 fiir gleichgerichtete Strémung, bzw. Gr/Re? < —1,33 fiir entgegen-
gerichtete Stromung, Der EinfluB der Trégheitskrifte auf die freic Konvektion ist fiir Re*/Gr > 0,01 von
Bedeutung. Bedingt durch den Auftrieb werden die Geschwindigkeitsprofile verandert; bei gleichgerichteter
Stromung werden die 8rtlichen Anstromgeschwindigkeiten {iberschritten, bei entgegengesetzter Stromung
ergibt sich ein S-formiger Verlauf.

UCCJIEIOBAHME CMEIIAHHOM BBIHYXJIEHHO! W ECTECTBEHHON
KOHBEKLIHAN OKOJO CPEPHI

Amnorangs — [TpoBeaeHO HCCHEAOBaHHE XaPAaKTEPHCTHK NOTOKA M TEMNIOOOMEHA NPH JIAMHHAPHOMH
CMEIAHHOH BBHIHYXKICHHOR H €CTeCTBEHHON XOHBEKUMH oKkono cthepsl. IIpeobpaszopanue ypaBHeHHs
COXPAHEHHS [UIs HEABTOMOZE/ILHBIX IIOT PAHHYHBIX CJIOEB PEIUATIOCH C IOMOLBIO KOHEYHO-Pa3HOCTHOr O
Merona. UucneHnble pe3yaLTATH IR ra308 ¢ wucnoM [Tpaunrns, parseim 0,7, npencTaBieHb! s
MIHPOKOTO IUANA30Ha CBOGOAHOKOHBEKTHBHBIX NAPaMETPOB, XapaKTEPH3YIOWHX BECh DEXHM CMe-
aHHON KOHBEKLMX OT YHCTO BRIHYKACHHON A0 wucTO ecrecTrennofl. Hafineno, uro B obuiem cnyyae
MIOKAMLHEI KOMDPUUMEHT TPEHHA U oKanbHOe YHCH0 Hyccenbra yBennuuBaioTCs C yBeJINYEHHEM
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NOIBEMHOH CHIIBI IPH CHYTHOM TEYCHMH M YMCHBLIAIOTCA C €€ YBE/IHYEHHEM B CJIy4ae MPOTHBOTOKA.
HccnienoBasiock Takke BITMSAHHE JIOKANBHBIX CKOPOCTeH HEBO3MYLUEHHOrO MOTOKA HA MPHMCTEHMBIN
CIOBHT M TemwnooOMeH Ha noBepxHOCTH. Kak rnoxa3niBaloT AauMHbIE NO TEMLIOOOMEHY, BIHSAHHE MOdb-
€MHO# CHIIbI Ha BEIHYXIEHHYIO KOHBEKLMIO CTAHOBHTCA 3HAMMTEILHBIM pu Gr/Re? > 1,6Tu < —1,33
Iyist CIyTHOTO NOTOKa M NpOTHBOTOKA. HaiineHo, YTO BNHAHHE CHMbl HHEPLHM Ha CBOGOAHYIO KOH-
BEKLIHIO CYLIECTBEHHO NpH Re?/Gr>-0,01. CkopocTHsie npodHH, Ha KOTOpPHIE OKa3bIBaeT BIHSHAE
NOXBEMHAS CHJIA, TIOKA3bIBAIOT OTKIIOHEHHE OT JIOKAJILHON CKOPOCTH CBOGOMHOIO TEUYeHHs B Cllydae
CTyTHOTO NMOTOKA H MMEIOT S-06pa3Hyro ¢dopMy Insi NPOTHBOTOKA.
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